
ESERCITAZIONE ROBOT SCARA

Un robot scara è caratterizzato dalle seguenti misure dei link:

l1= 35 cm l2= 30 cm h base= 30 cm . Dopo aver fissato l'origine degli assi calcolare le coordinate dell' "end effector" (α,β,z) e del giunto intermedio per assemblare (nella posizione indicata) il pezzo assegnato costituito da un cilindro cavo (h=2 cm) e un cilindro pieno.

Descrivere la sequenza del ciclo di assemblaggio tramite il linguaggio GRAFCET nell'ipotesi di utilizzare una ventosa pneumatica V come "end effector".

Diametro ventosa

Il diametro della ventosa è importante ai fini della forza di presa assoluta e in relazione alla conformazione del pezzo. Il diametro necessario può essere calcolato con le seguenti formule.

Per l'aspirazione orizzontale:

$$d = 1,12 \cdot \sqrt{\frac{m \cdot S}{P_{II} \cdot n}}$$

d = diametro della ventosa in cm
(con labbro doppio ≈ diametro interno,
per ventose a soffietto = diametro interno
del labbro di tenuta)

Per l'aspirazione verticale:

$$d = 1,12 \cdot \sqrt{\frac{m \cdot S}{P_U \cdot n \cdot}}$$

m = massa del pezzo in Kg

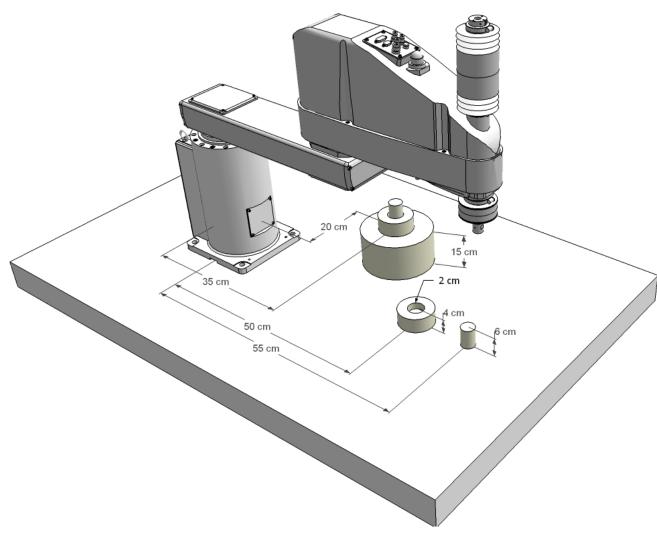
P_U = depressione in bar

n = numero ventose

S = fattore di sicurezza

 μ = coefficiente di attrito

Tabella valori di riferimento	
superficie pezzo	circa µ
vetro, pietra, materiale plastico (asciutto)	circa 0,5
carta vetrata (asciutta)	1,1
superfici umide, oleose	0,1 - 0,4


ESERCITAZIONE ROBOT SCARA

Un robot scara è caratterizzato dalle seguenti misure dei link:

l1= 35 cm l2= 30 cm h base= 30 cm . Dopo aver fissato l'origine degli assi calcolare le coordinate dell' "end effector" (α,β,z) e del giunto intermedio per assemblare (nella posizione indicata) il pezzo assegnato costituito da un cilindro cavo (h=2 cm) e un cilindro pieno.

Descrivere la sequenza del ciclo di assemblaggio tramite il linguaggio GRAFCET nell'ipotesi di utilizzare una ventosa pneumatica V come "end effector".

Diametro ventosa

Il diametro della ventosa è importante ai fini della forza di presa assoluta e in relazione alla conformazione del pezzo. Il diametro necessario può essere calcolato con le seguenti formule.

Per l'aspirazione orizzontale:

$$d = 1,12 \cdot \sqrt{\frac{m \cdot S}{P_U \cdot n}}$$

d = diametro della ventosa in cm
(con labbro doppio ≈ diametro interno,
per ventose a soffietto = diametro interno
del labbro di tenuta)

Per l'aspirazione verticale:

$$d = 1,12 \cdot \sqrt{\frac{m \cdot S}{P_U \cdot n \cdot \mu}}$$

m = massa del pezzo in Kg

P_{IJ} = depressione in bar

n = numero ventose

S = fattore di sicurezza

 μ = coefficiente di attrito

Tabella valori di riferimento	
superficie pezzo	circa µ
vetro, pietra, materiale plastico (asciutto)	circa 0,5
carta vetrata (asciutta)	1,1
superfici umide, oleose	0,1 - 0,4